
MorpCC Documentation
Release 0.1.0

Izhar Firdaus

Dec 02, 2022

CONTENTS

1 Features 3

2 Documentation 5
2.1 Introduction . 5
2.2 Quick Start Tutorial . 7
2.3 Community . 9

3 Indices and tables 11

i

ii

MorpCC Documentation, Release 0.1.0

Morp Control Center (MorpCC) is a meta information management system (meta-IMS) built on top of Morp
Framework (morpfw) & Morepath. It is designed to provide common components needed for the the development
of IMSes while allowing flexibility for developers to customize and override the components.

CONTENTS 1

http://morpframework.rtfd.org
http://morpframework.rtfd.org
http://morepath.rtfd.org

MorpCC Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

FEATURES

• Responsive default UI based on Gentelella project

• Pluggable auth system

– User, group & API key management system (SQLAlchemy based)

– REMOTE_USER based authentication

• Content type framework and CRUD UI

• Pluggable CRUD storage backend

– SQLAlchemy (default)

– ElasticSearch

– Dictionary based, in-memory

• Listing / search interface with JQuery DataTables server-side API

• Pluggable blob storage backend

– Filesystem store (default)

• REST API through morpfw content type API engine with JWT based token

• Statemachine engine using PyTransitions through morpfw

• Overrideable components and templates through morepath & dectate app inheritance

3

https://github.com/puikinsh/gentelella
http://morepath.rtfd.org
http://dectate.rtfd.org

MorpCC Documentation, Release 0.1.0

4 Chapter 1. Features

CHAPTER

TWO

DOCUMENTATION

2.1 Introduction

MorpCC aims to solve several common challenges when doing enterprise web application development, which
tend to require capabilities such as:

• Enterprise directory service (LDAP/AD) integration

• User, group and permission management

• Task scheduling for background jobs

• Customizable business rules logic

• Customizable / overrideable components and views to cater to sub/similar use-cases.

• Data might be stored in remote systems or APIs, not necessarily a database.

• Scalability to handle large data processing workload

• Corporate theming

• Mobile-ready / mobile integration

• State tracking and state management

• Fast turnaround time from business requirements to prototype application

• Activity tracking & analytics

• Messages & notifications

MorpCC, and its underlying framework, MorpFW attempts to assist the challenges above through leveraging the
component engine provided by Morepath and Dectate to provide:

• Default admin+user UI which can be overridden easily, enabling agility in development by allowing de-
velopers to focus more on the data domain model first, rather than the repetive application bootstrapping
tasks.

• CRUD with pluggable storage engine, allowing flexibility in writing your own storage implementation

• State engine support, simplifying task of developing stage management of your data objects

• Pluggable user, group, permission and API key management.

• Standardized REST API interface for external integration.

• (TBD) Powerful theming capability through diazo.

morpcc and morpfw design is highly influenced by Plone project. Unlike frameworks such as Django, Pyramid,
and Flasks routing which routes to views, morpcc/morpfw routing routes to an object/model publisher. Views are
attached to model and goes around with the model. This design gives the framework certain benefits:

• Views and view templates are highly reusable because as long as the model implements the attributes and
methods the view queries, the view can be attached to the model.

5

http://morpframework.rtfd.org
http://morepath.rtfd.org
http://dectate.rtfd.org
http://docs.diazo.org
http://plone.org

MorpCC Documentation, Release 0.1.0

• Views can be inherited by sub-models. You can create mixin interface classes and attach the views to it. Any
models which inherits from the mixin will get the view.

• Views follows model and its sub-models. Whatever path the model is mounted, the views for the model will
follow.

2.1.1 Underlying Frameworks & Libraries

MorpCC was built using the following frameworks & libraries to power it. So if you need more detailed documen-
tation on specific components that are not covered here, please head to their documentation

• Morepath - Python web framework with superpowers

• MorpFW - A REST API web framework built on top of Morepath.

• Reg - Dispatching library similar to Zope Component Architecture

• Dectate - Decorator based configuration system

• SQLAlchemy - SQL abtraction library & ORM, used as the default storage engine.

• Chameleon - Templating engine that implements Zope Template Attribute Language (TAL).

• Rulez - JSON based rules engine

• PyTransitions - State machine engine for Python.

• Celery - Distributed task queue and job scheduling library for Python.

• Gentelella - Bootstrap 3 based admin template.

2.1.2 Entity Model

6 Chapter 2. Documentation

http://morepath.rtfd.org
http://morpframework.rtfd.org
http://reg.rtfd.org
https://zopecomponent.readthedocs.io
http://dectate.rtfd.org
http://sqlalchemy.org
http://chameleon.rtfd.org
https://chameleon.readthedocs.io/en/latest/reference.html
https://github.com/morpframework/rulez
https://github.com/pytransitions/transitions
http://www.celeryproject.org/
https://github.com/puikinsh/gentelella

MorpCC Documentation, Release 0.1.0

2.2 Quick Start Tutorial

2.2.1 Dependencies

MorpCC requires following services for it to function correctly:

• postgresql database. 3 databases are needed, for following purpose:

– main database - for MorpCC application tables

– warehouse database - MorpCC provides a Through-The-Web (TTW) data model manager which allows
creation of tables and managing data using the Web UI. Tables created by this feature will store its data
in this database.

– cache database - used by beaker for caching and session

• rabbitmq message queue - used by background processing engine

2.2.2 Bootstrapping new project

MorpCC requires Python 3.7 or newer to run. Python 3.6 is also supported but you will need to install dataclasses
backport into your environment.

The recommended way to install morpfw is to use buildout, skeleton that is generated using mfw-template. Please
head to mfw-template documentation for tutorial.

2.2.3 Bootstrapping without mfw-template

If you prefer to use virtualenv, or other methods, you can follow these steps.

First, lets get morpfw & morpcc installed

$ pip install morpfw morpcc

If you are using buildout, version locks files are available at mfw_workspace repository: https://github.com/
morpframework/mfw_workspace/tree/master/versions

Lets create an app.py.

import morpcc
import morpcc.permission as ccperm
import morpfw
from morpfw.authz.pas import DefaultAuthzPolicy
from morpfw.crud import permission as crudperm

class AppRoot(morpcc.Root):
pass

class App(morpcc.App):
pass

@App.path(model=AppRoot, path="/")
def get_approot(request):

return AppRoot(request)

(continues on next page)

2.2. Quick Start Tutorial 7

http://www.buildout.org
http://mfw-template.rtfd.org
https://github.com/morpframework/mfw_workspace/tree/master/versions
https://github.com/morpframework/mfw_workspace/tree/master/versions

MorpCC Documentation, Release 0.1.0

(continued from previous page)

@App.template_directory()
def get_template_directory():

return "templates"

morpcc is built on morpfw which boot up application using a settings.yml file, so lets create one. You will
need a fernet key which have to be generated using following python code:

$ python -c "from cryptography.fernet import Fernet; print(Fernet.generate_key().
→˓decode())"

Then lets create a settings.yml

application:
title: My First App
class: app:App
factory: morpcc.app:create_morpcc_app

configuration:
morpfw.authn.policy: morpcc.app:AuthnPolicy
morpfw.secret.fernet_key: '<fernet-key>'
morpfw.storage.sqlstorage.dburi: 'postgresql://postgres:postgres@localhost:5432/

→˓morpcc'
morpfw.storage.sqlstorage.dburi.warehouse: 'postgresql://

→˓postgres:postgres@localhost:5432/morpcc_warehouse'
morpfw.blobstorage.uri: 'fsblob://%(here)s/blobstorage'
morpfw.beaker.session.type: ext:database
morpfw.beaker.session.url: 'postgresql://postgres:postgres@localhost:5432/morpcc_

→˓cache'
morpfw.beaker.cache.type: ext:database
morpfw.beaker.cache.url: 'postgresql://postgres:postgres@localhost:5432/morpcc_

→˓cache'
morpfw.celery:
broker_url: 'amqps://guest:guest@localhost:5671/'
result_backend: 'db+postgresql://postgres:postgres@localhost:5432/morpcc_cache'

You will then need to initialize database migration:

$ morpfw migration init migrations

Default alembic Afterwards, you can then start the application using:

$ morpfw -s settings.yml register-admin -u admin -e admin@localhost.local
$ morpfw -s settings.yml start

This will start your project at http://localhost:5000/

2.2.4 Understanding core framework functionalities

MorpCC is built on top of Morepath, so we suggest you head to Morepath Documentation for guide on how to
register your own views, etc.

CRUD engine, resource type system and REST API engine for MorpCC is provided by MorpFW. Head to MorpFW
documentation to understand more on the type system used in MorpCC.

The templating language used is TAL, and we extensively use METAL for template inheritance. Head to
Chameleon TAL/METAL Language Reference and Zope Page Template Reference to understand more about TAL
and METAL.

8 Chapter 2. Documentation

http://localhost:5000/
http://morepath.rtfd.org
http://morpframework.rtfd.org
http://morpframework.rtfd.org
https://chameleon.readthedocs.io/en/latest/reference.html
https://zope.readthedocs.io/en/latest/zope2book/AppendixC.html

MorpCC Documentation, Release 0.1.0

2.3 Community

Our community is still in infancy, and we hangout on Discord. Come join us at MorpFW Discord Server if you
have any questions.

2.3. Community 9

https://discord.gg/yuutKdD

MorpCC Documentation, Release 0.1.0

10 Chapter 2. Documentation

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

11

	Features
	Documentation
	Introduction
	Underlying Frameworks & Libraries
	Entity Model

	Quick Start Tutorial
	Dependencies
	Bootstrapping new project
	Bootstrapping without mfw-template
	Understanding core framework functionalities

	Community

	Indices and tables

